SUPPLEMENTARY TEXT AND TABLES

Justification for Excluding Studies from the Meta-analysis

Metamorphosis

For our meta-analysis on effects of atrazine on amphibian metamorphosis, six studies were excluded (Table 1 & S1). La Fiandra et al. (2008) was excluded from our meta-analyses because substantial concentrations of several triazine pesticides were detected in their well water (negative) "control". Allran and Karasov (2000) was excluded for timing of metamorphosis because only used 50% of the metamorphs were used in this statistical analysis without describing how they selected this subset of metamorphs or why they only used 50% when 100% of the metamorphs were used for the size at metamorphosis analysis. Orton et al. (2006) was excluded for timing of metamorphosis because they claimed that there was no significant effect of atrazine on this trait but also provided a probability value less than 0.05. No data, test statistics, or within-group variance estimates were provided to assess whether the effect was likely significant or not. Three studies (Kloas et al. 2009, Oka et al. 2008, and Hayes et al. 2002b) were excluded because they did not provide sufficient statistical information (e.g., test statistics or degrees of freedom) or data (means and variances) making it impossible for us to evaluate their findings (Table S1). La Fiandra (2008) and Orton et al. (2006) had unknown effects on metamorphosis and the four remaining studies claimed to have not detected effects of atrazine on the focal metamorphic trait (Table S1).

Behavior

Only Koprivnikar et al. (2007) was excluded from our meta-analyses on behavior because no variance estimates were provided for any response variable in this paper (Table S1). These authors did not find effects of atrazine on behavior.

Immunity and Infections

Cossarinidunier (1987) was the only study excluded from the meta-analysis on immunity (Table S1). It was excluded because they only studied cells from a single fish, and provided no statistics or within-group variance estimates. Even in this study, at maximum chemoluminescence, every atrazine concentration tested resulted in less macrophage phagocytosis than the controls (Cossarinidunier 1987).

Four studies were not included in our meta-analysis on the effects of atrazine on infections because they had insufficient power, obvious confounders, or inadequate statistics (Table S1). Griggs and Belden (2008) was excluded for several reasons, including experimental design issues and solvent concentrations that affected cercariae (Table S1). This study had insufficient statistical power because they used cercariae that were moribund (10 h post-shedding). For example, across all treatments where cercariae were exposed to atrazine, an average of 5% infected *Rana clamitans* tadpoles, whereas infection rates for cercariae in the literature are typically between 20% and 90% (Kiesecker 2002; Koprivnikar et al. 2007; Rohr et al. 2008b). The tadpoles and cercariae in this study were also only exposed to atrazine for 10 h. This is not an ecologically relevant exposure and unlikely enough time for atrazine to alter the abundance of amphibian immune cells because the half-life for amphibian eosinophils, basophils, and neutrophils is up to 8 h, whereas the half-life for lymphocytes is 3-8 weeks (Raffel et al. 2006). Finally, the mesocosm study conducted by Griggs and Belden (2008) confounded

tadpole mortality with trematode loads and thus we do not know if the lack of an effect of atrazine was because the most infected individuals died or because there was no effect of atrazine.

Koprivnikar et al. (2006a) was excluded because only one of 12 sampled ponds had concentrations of atrazine that were above the method detection limit, providing insufficient statistical power to detect any effects of atrazine on parasite abundance (Table S1). King et al. (2007) was not included because it was spatially confounded. Wetlands within each of the pesticide categories were much closer to one another than they were to any wetlands within the other categories, making it impossible to know whether any significant effects of atrazine were because of the pesticides or something else about each spatial region. Finally, we excluded Koprivnikar et al. (2007) because no variance estimates were provided for any response variable. Of the four studies excluded from the infection meta-analysis, three did not detect effects of atrazine while one detected elevated infections if the frogs were exposed to atrazine (Table S1).

Gonadal Morphology

Twelve studies were excluded from our meta-analysis on general gondal gross morphology (Table S1). Hayes et al. (2003; 2002b) and Kloas et al. (2009) were excluded because they draw conclusions without presenting statistical analyses, results (e.g. test statistics), or data (e.g., means). Tavera-Mendoza et al. (2002a; 2002b), Spanò et al. (2004) and Nadzialek et al. (2008) were excluded because they were pseudoreplicated (Table S1); that is, they used individuals within tanks, rather than the tank, as the replicate. Hecker et al. (2004) and Coady et al. (2004; 2005) were excluded because reference sites or negative controls were contaminated with atrazine, and Jooste et al. (2005) and Orton et al. (2006) were excluded due to high background

levels of gonadal abnormalities that occurred in their control treatments (Table S1). One of the eleven excluded studies found no significant effects of atrazine, four report significant effects, and six have unknown effects due to contaminated control or reference populations or atypically high quantities of gonadal abnormalities in control treatments (Table S1).

Sex Ratios

Four studies were excluded from our meta-analysis on sex ratios (Table S1). Suzawa and Ingraham, (2008) did not present statistical methodology or results (e.g. test statistics, degrees of freedom, p-values), Coady et al. (2004; 2005) had contaminated negative controls as well as statistical errors, and Orton et al. (2006) had unusually high background levels of gonadal abnormalities (12% intersex individuals- having both male and female gonadal tissue) in control treatments [compare to (Carr et al. 2003a; Hayes et al. 2002b; Kloas et al. 2009; Oka et al. 2008) which all report occurrences lower than 1%, Table 6]. One of these studies, the only one conducted on fish, reports significant effects of atrazine (Suzawa and Ingraham 2008), and three have unknown effects due to contaminated control populations or abnormally high quantities of gonadal abnormalities in control treatments.

Gonadal Function

Six studies were excluded from our meta-analysis on testicular cell types (Table S1). Four studies were pseudoreplicated (Spano et al. 2004; Tavera-Mendoza et al. 2002a) or presented no statistics (Bringolf et al. 2004; Kloas et al. 2009). One study (Smith et al. 2005) had atrazine contaminated reference sites (reported in Hecker et al. 2004), and one had unusually high levels of gonadal abnormalities in the control treatment (Orton et al. 2006)(Table S1). Two of these six

studies found effects of atrazine on spermatogenesis, two had unknown effects, and two reported no effects.

Four studies were excluded from our meta-analysis on sex hormone concentrations (Table S1). Spanò et al. (2004), Salaberria et al. (2009) and Nadzialek et al. (2008) were psuedoreplicated, whereas Coady et al. (2005) had atrazine contaminated controls (up to 0.29 μ g/L; Table S1). Three of the four excluded studies report significant effects of atrazine on sex hormone concentrations.

Du Preez et al. (2008) was excluded from our discussion of the effects of atrazine on reproductive success (Table S1) because control animals (those from Jooste et al. 2005) had unusually high background levels of gonadal abnormalities (~50% had testicular ovarian follicles-see Table S1).

Vitellogenin

Two studies were excluded from our meta-analysis because they were psuedoreplicated (Salaberria et al. 2009; Spano et al. 2004) (Table S1). Spanò et al. (2004) found no effects of atrazine. Salaberria et al. (2009), however, did find a significant effect of atrazine on plasma vitellogenin concentrations, but the route of exposure was via an intraperitoneal injection and not through aqueous exposure, as was the case for all other studies either included or excluded from this vitellogenin analysis. Indeed, aqueous exposures are more ecologically relevant, so including this study in our analysis does not change our conclusion that atrazine, at ecologically relevant doses, does not appear to be estrogenic.

Aromatase

Two studies were excluded from this meta-analysis on aromatase (Table S1). One (Hecker et al. 2004) had atrazine-contaminated reference sties and the other was pseudoreplicated (Nadzialek et al. 2008). Both of these studies report no effects of atrazine on aromatase activity or expression.

Literature Cited in Supplementary Materials

- Allran JW, Karasov WH. 2000. Effects of atrazine and nitrate on northern leopard frog (*Rana pipiens*) larvae exposed in the laboratory from posthatch through metamorphosis. Environ Toxicol Chem 19:2850-2855.
- Bringolf RB, Belden JB, Summerfelt RC. 2004. Effects of atrazine on fathead minnow in a short-term reproduction assay. Environ Toxicol Chem 23:1019-1025.
- Coady KK, Murphy MB, Villeneuve DL, Hecker M, Jones PD, Carr JA, et al. 2004. Effects of atrazine on metamorphosis, growth, and gonadal development in the green frog (*Rana clamitans*). J Toxicol Env Heal A 67:941-957.
- Coady KK, Murphy MB, Villeneuve DL, Hecker M, Jones PD, Carr JA, et al. 2005. Effects of atrazine on metamorphosis, growth, laryngeal and gonadal development, aromatase activity, and sex steroid concentrations in *Xenopus laevis*. Ecotoxicol Environ Safe 62:160-173.
- Cossarinidunier M. 1987. Effects of the pesticides atrazine and lindane and of manganese ions on cellular-immunity of carp, *Cyprinus carpio*. J Fish Biol 31:67-73.
- Du Preez LH, Kunene N, Everson GJ, Carr JA, Giesy JP, Gross TS, et al. 2008. Reproduction, larval growth, and reproductive development in African clawed frogs (*Xenopus laevis*) exposed to atrazine. Chemosphere 71:546-552.

- Griggs JL, Belden LK. 2008. Effects of atrazine and metolachlor on the survivorship and infectivity of *Echinostoma trivolvis* trematode cercariae. Arch Environ Contam Toxicol 54:195-202.
- Hayes T, Haston K, Tsui M, Hoang A, Haeffele C, Vonk A. 2002a. Herbicides: Feminization of male frogs in the wild. Nature 419:895-896.
- Hayes T, Haston K, Tsui M, Hoang A, Haeffele C, Vonk A. 2003. Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (*Rana pipiens*): Laboratory and field evidence. Environ Health Persp 111:568-575.
- Hayes TB, Collins A, Lee M, Mendoza M, Noriega N, Stuart AA, et al. 2002b. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. P Natl Acad Sci USA 99:5476-5480.
- Hecker M, Giesy JP, Jones PD, Jooste AM, Carr JA, Solomon KR, et al. 2004. Plasma sex steroid concentrations and gonadal aromatase activities in African clawed frogs (*Xenopus laevis*) from South Africa. Environ Toxicol Chem 23:1996-2007.
- Jooste AM, Du Preez LH, Carr JA, Giesy JP, Gross TS, Kendall RJ, et al. 2005. Gonadal development of larval male *Xenopus laevis* exposed to atrazine in outdoor microcosms. Environ Sci Tech 39:5255-5261.
- King KC, McLaughlin JD, Gendron AD, Pauli BD, Giroux I, Rondeau B, et al. 2007. Impacts of agriculture on the parasite communities of northern leopard frogs (*Rana pipiens*) in southern Quebec, Canada. Parasitology 134:2063-2080.
- Kloas W, Lutz I, Springer T, Krueger H, Wolf J, Holden L, et al. 2009. Does atrazine influence larval development and sexual differentiation in *Xenopus laevis*? Toxicol Sci 107:376-384.

- Koprivnikar J, Baker RL, Forbes MR. 2006a. Environmental factors influencing trematode prevalence in grey tree frog (*Hyla versicolor*) tadpoles in southern Ontario. J Parasitol 92:997-1001.
- Koprivnikar J, Forbes MR, Baker RL. 2007. Contaminant effects on host-parasite interactions: Atrazine, frogs, and trematodes. Environ Toxicol Chem 26:2166-2170.
- LaFiandra EM, Babbitt KJ, Sower SA. 2008. Effects of atrazine on anuran development are altered by the presence of a nonlethal predator. J Toxicol Env Heal A 71:505-511.
- Nadzialek S, Spano L, Mandiki SNM, Kestemont P. 2008. High doses of atrazine do not disrupt activity and expression of aromatase in female gonads of juvenile goldfish (*Carassius auratus* 1.). Ecotoxicology 17:464-470.
- Oka T, Tooi O, Mitsui N, Miyahara M, Ohnishi Y, Takase M, et al. 2008. Effect of atrazine on metamorphosis and sexual differentiation in *Xenopus laevis*. Aquat Toxicol 87:215-226.
- Orton F, Carr JA, Handy RD. 2006. Effects of nitrate and atrazine on larval development and sexual differentiation in the northern leopard frog *Rana pipiens*. Environ Toxicol Chem 25:65-71.
- Salaberria I, Hansen BH, Asensio V, Olsvik PA, Andersen RA, Jenssen BM. 2009. Effects of atrazine on hepatic metabolism and endocrine homeostasis in rainbow trout (*Oncorhynchus mykiss*). Toxicol Appl Pharm 234:98-106.
- Smith EE, Du Preez LH, Gentles A, Solomon KR, Tandler B, Carr JA, et al. 2005. Assessment of laryngeal muscle and testicular cell types in *Xenopus laevis* (Anura Pipidae) inhabiting maize and non-maize growing areas of South Africa. Afr J Herpetol 54:69-76.

- Spano L, Tyler CR, van Aerle R, Devos P, Mandiki SNM, Silvestre F, et al. 2004. Effects of atrazine on sex steroid dynamics, plasma vitellogenin concentration and gonad development in adult goldfish (*Carassius auratus*). Aquat Toxicol 66:369-379.
- Suzawa M, Ingraham HA. 2008. The herbicide atrazine activates endocrine gene networks via non-steroidal nr5a nuclear receptors in fish and mammalian cells. PLoS One 3:doi:10.1371/journal.pone.0002117.
- Tavera-Mendoza L, Ruby S, Brousseau P, Fournier M, Cyr D, Marcogliese D. 2002a. Response of the amphibian tadpole (*Xenopus laevis*) to atrazine during sexual differentiation of the testis. Environ Toxicol Chem 21:527-531.
- Tavera-Mendoza L, Ruby S, Brousseau P, Fournier M, Cyr D, Marcogliese D. 2002b. Response of the amphibian tadpole *Xenopus laevis* to atrazine during sexual differentiation of the ovary. Environ Toxicol Chem 21:1264-1267.
- USEPA. 2005. Draft final report on multi-chemical evaluation of the short-term reproduction assay with the fathead minnow. Washington, D.C.: U.S. Environmental Protection Agency.

Table S1. Endpoints excluded from the meta-analysis.

Taxon	Species	Endpoint	Effect direction	Conc. where effect was observed (µ/L)	Conc. tested (µ/L)	Atrazine grade	Experi- ment type ^{bb}	Exposure duration ^a	Excluded from meta- analysis?	- Reference	Response
Frog	Hyla versicolor	Net effect on developmental rate	None, trend toward increase	-	20, 200	Commercial; Aatrex	SR	Until fore-limb emerg-ence, about 50	Yes	LaFiandra et al. 2008 ^{b,c}	Net effect on developmental rate
Frog	Hyla versicolor	Size at or near metamorphosis	None detected	-	20,200	Commercial; Aatrex	SR	Until fore-limb emerg-ence, about 50	Yes	LaFiandra et al. 2008 ^{b,c}	Size at or near metamorphosis
Frog	Rana pipiens	Net effect on developmental rate	Unknown	-	10	Technical	SR	LTM	Yes	Orton et al. 2006 ^{d,e}	Net effect on developmental rate
Frog	Rana pipiens	Size at or near metamorphosis	Unknown	-	10	Technical	SR	LTM	Yes	Orton et al. 2006 ^{f,g}	Size at or near metamorphosis
Frog	Xenopus Iaevis	Net effect on developmental rate	None detected	-	0.1, 1, 10, 25	Technical	SR	185 d or less	Yes	Coady et al. 2005 ^h	Net effect on developmental rate
Frog	Xenopus Iaevis	Size at or near metamorphosis	Unknown	-	0.1, 1, 10, 26	Technical	SR	186 d or less	Yes	Coady et al. 2005 ^h	Size at or near metamorphosis
Frog	Xenopus Iaevis	Net effect on developmental rate	None detected	-	0.01, 0.1, 1, 10, 25; 0.1, 0.4, 0.8, 1.0, 25, 200	Technical	SR	LTM	Yes	Hayes et al. 2002b ^h	Net effect on developmental rate
Frog	Xenopus laevis	Size at or near metamorphosis	None detected	-	0.01, 0.1, 1, 10, 25; 0.1, 0.4, 0.8, 1.0, 25, 201	Technical	SR	LTM	Yes	Hayes et al. 2002b ^h	Size at or near metamorphosis
Frog	Xenopus Iaevis	Net effect on developmental rate	Unknown	-	0.1, 1, 10, 100	Technical	SR	LTM	Yes	Oka et al. 2008 ^{e,g}	Net effect on developmental rate
Frog	Xenopus Iaevis	Size at or near metamorphosis	Unknown	-	0.1, 1, 10, 100	Technical	SR	LTM	Yes	Oka et al. 2008 ^{e,g}	Size at or near metamorphosis
Frog	Rana sylvatica	Locomotor activity	None detected	-	3, 30	Commercial; Aatrex	SR	31 d for tadpoles, 1h for cercariae	Yes	Koprivnikar et al. 2007 ^{i,j}	Amphibian Behaviors; Locomotor Activity
Fish	Cyprinus caprio	Chemoluminescence of kidney and spleen macrophages phagocytosing opsonized zymosan	No effect, but decrease in every conc. relative to control at max. chemo-	-	7000-28000	Technical	PE	2 h	Yes	Cossarini- dunier et al. 1987 ^{j, k,I}	Amphibian Immunity
Fish	Cyprinus caprio	Chemoluminescence of kidney and spleen macrophages phagocytosing opsonized Yersinia ruckeri	No effect	-	7000-28000	Technical	PE	2 h	Yes	Cossarini- dunier et al. 1987 ^{j, k, l}	Amphibian Immunity
Frog	R. clamitans	No. of <i>Echinostoma trivolvis</i> cercariae	Unknown, but a 53% increase at 15 μ/L	-	15, 100	Technical	PE	10 h for tadpoles and cercariae	Yes	Griggs and Belden 2008 ^{m,n}	Intections
Frog	R. sylvatica	No. of <i>Echinostoma trivolvis</i> cercariae	Unknown	-	15, 100	Technical	PE	10 h for tadpoles and cercariae	Yes	Griggs and Belden 2008 ^{m,n}	Amphibian Parasite Infections
Frog	R. sylvatica	No. of Echinostoma trivolvis cercariae	Unknown	-	15, 100	Technical	PE	14 d	Yes	Griggs and Belden 2008 ^{m,o}	Amphibian Parasite Infections
Frog	R. sylvatica	No. of <i>Echinostoma</i> <i>trivolvis</i> cercariae	Increased when tadpole, but not cercariae, were exposed	30	3, 30	Commercial; Aatrex ⁱ	SR, PE	31 d for tadpoles, 1h for cercariae	Yes	Koprivnikar et al. 2007 ^{i.j.p}	Amphibian Parasite Infections
Frog	Hyla versicolor	No. of larval trematodes	Unknown	-	Unknown	Commercial	FS	Unknown	Yes	Koprivnikar et al. 2006 ^q	Amphibian Parasite Infections
Frog	R. pipiens	No. of helminths	Unknown	-	Unknown	Commercial	FS	Unknown	Yes	King et al. 2007 ^r	Amphibian Parasite Infections
Frog	Rana clamitans	Discontinuous gonads (abnormal segmentation)	Unknown		Control: 0.07- 0.25, treatments: 10, 25	Technical	SR	273 days during larval period	Yes	Coady et al. 2004 ^s	Gonadal Morphology; Testes
Frog	Rana clamitans	Discontinuous gonads (abnormal segmentation)	Unknown	-	Control: 0.07- 0.25, treatments: 10, 25	Technical	SR	273 days during larval period	Yes	Coady et al. 2004 ^s	Gonadal Morphology; Testes

Frog	Rana clamitans	Intersex (having testicular and ovarian tissues)	Unknown	-	Control: 0.07- 0.25, treatments: 10, 25	Technical	SR	273 days during larval period	Yes	Coady et al. 2004 ^s	Gonadal Morphology; Testes
Frog	Rana clamitans	Size irregularities	Unknown	-	Control: 0.07- 0.25, treatments: 10, 25	Technical	SR	273 days during larval period	Yes	Coady et al. 2004 ^s	Gonadal Morphology; Testes
Frog	Rana clamitans	Testicular ovarian follicles (testicular oocytes)	Unknown	-	Control: 0.07- 0.25, treatments: 10, 25	Technical	SR	273 days during larval period	Yes	Coady et al. 2004 ^s	Gonadal Morphology; Testes
Frog	Xenopus Iaevis	Discontinuous gonads (abnormal segmentation)	Unknown	-	Control: 0.1- 0.26, treatments: 0.1, 1.0, 10, 25	Technical	SR	LTM	Yes	Coady et al. 2005 ^s	Gonadal Morphology; Testes
Frog	Xenopus Iaevis	Discontinuous gonads (abnormal segmentation)	Unknown	-	Control: 0.1- 0.26, treatments: 0.1, 1.0, 10, 25	Technical	SR	LTM + 2-3 months	Yes	Coady et al. 2005 ^s	Gonadal Morphology; Testes
Frog	Xenopus Iaevis	Intersex (having testicular and ovarian tissues)	Unknown	-	Control: 0.1- 0.26, treatments: 0.1, 1.0, 10, 25	Technical	SR	LTM + 2-3 months	Yes	Coady et al. 2005 ^s	Gonadal Morphology; Testes
Frog	Xenopus Iaevis	Mixed sex (single gonad has both ovarian and testicular tissue)	Unknown	-	Control: 0.1- 0.26, treatments: 0.1, 1.0, 10, 25	Technical	SR	LTM	Yes	Coady et al. 2005 ^s	Gonadal Morphology; Testes
Frog	Xenopus Iaevis	Mixed sex (single gonad has both ovarian and testicular tissue)	Unknown	-	Control: 0.1- 0.26, treatments: 0.1, 1.0, 10, 25	Technical	SR	LTM + 2-3 months	Yes	Coady et al. 2005 ^s	Gonadal Morphology; Testes
Frog	Xenopus Iaevis	Other gonadal abnormalities	Unknown	-	Control: 0.1- 0.26, treatments: 0.1, 1.0, 10, 25	Technical	SR	LTM	Yes	Coady et al. 2005 ^s	Gonadal Morphology; Testes
Frog	Xenopus Iaevis	Size irregularities	Unknown	-	Control: 0.1- 0.26, treatments: 0.1, 1.0, 10, 25	Technical	SR	LTM	Yes	Coady et al. 2005 ^s	Gonadal Morphology; Testes
Frog	Xenopus Iaevis	Size irregularities	Unknown	-	Control: 0.1- 0.26, treatments: 0.1, 1.0, 10, 25	Technical	SR	LTM + 2-3 months	Yes	Coady et al. 2005 ^s	Gonadal Morphology; Testes
Frog	Xenopus Iaevis	Testicular ovarian follicles (testicular oocytes)	Unknown	-	Control: 0.1- 0.26, treatments: 0.1, 1.0, 10, 25	Technical	SR	LTM+ 2-3 months	Yes	Coady et al. 2005 ^s	Gonadal Morphology; Testes
Frog	Xenopus Iaevis	Discontinuous (multiple) testes or intersex	Reported an increase	0.4, 0.8, 1.0, 10, 25, 200	Exp. 1: 0.1, 1.0, 10, 25 and Exp 2: 0.1, 0.4, 0.8, 1.0, 25, 200	Technical	SR	LTM	Yes	Hayes et al., 2002b ^{l.t}	Gonadal Morphology; Testes
Frog	Rana pipiens	Underdeveloped testes, closed or absent tubules, or low to absent germ cells	Reported an increase	0.1, 25	0.1, 25	Technical	SR	LTM	Yes	Hayes et al. 2003 ⁱ	Gonadal Morphology; Testes
Frog	Rana pipiens	Underdeveloped testes, closed or absent tubules, or low to absent germ cells	Reported an increase	0.8	ND ^p , 0.2, 0.3, 0.5, 0.8, 6.7	Commercial	FS	Unknown	Yes	Hayes et al. 2003 ^l	Gonadal Morphology; Testes
Frog	Rana pipiens	Testicular ovarian follicles (testicular oocytes)	Reported an increase	0.1, 25	0.1, 25	Technical	SR	LTM	Yes	Hayes et al. 2003 ^l	Gonadal Morphology; Testes
Frog	Rana pipiens	Testicular ovarian follicles (testicular oocytes) Gonadal somatic	Reported an increase	0.2, 0.3, 0.5, 0.8, 6.7	ND ^p , 0.2, 0.3, 0.5, 0.8, 6.7	Commercial	FS	Unknown	Yes	Hayes et al. 2003 ⁱ	Gonadal Morphology; Testes
Frog	Xenopus Iaevis	index (testis size corrected for body size)	Unknown	-	<0.1-4.14	Commercial	FS	Unknown	Yes	Hecker et al. 2004 ^s	Gonadal Morphology; Testes
T 11	0.1	· 1									

Frog	Xenopus Iaevis	Discontinuous gonads (abnormal segmentation)	Unknown	-	1, 10, 25	Not reported	PE	Single exposure at beginning of study	Yes	Jooste et al. 2005 ^u	Gonadal Morphology; Testes
Frog	Xenopus Iaevis	Testicular ovarian follicles (testicular oocytes)	Unknown	-	1, 10, 25	Not reported	PE	Single exposure at beginning of study	Yes	Jooste et al. 2005 ^u	Gonadal Morphology; Testes
Frog	Xenopus Iaevis	Dilated tubules	Reported none	-	0.1, 1.0, 10, 25, 100	Technical	SR	LTM	Yes	Kloas et al. 2009 ^v	Gonadal Morphology; Testes
Frog	Xenopus laevis	Gonadal area	Reported none	-	0.1, 1.0, 10, 25, 100	Technical	SR	LTM	Yes	Kloas et al. 2009 ^v	Gonadal Morphology; Testes
Frog	Xenopus Iaevis	Mixed sex (single gonad has both ovarian and testicular tissue)	Reported none	-	0.1, 1.0, 10, 25, 100	Technical	SR	LTM	Yes	Kloas et al. 2009 ^v	Gonadal Morphology; Testes
Frog	Rana pipiens	Open (spacious) testicular lobules	Unknown	-	10 and 10 + 10mg/L sodium nitrate	Technical	SR	LTM	Yes	Orton et al. 2006 ^u	Gonadal Morphology; Testes
Frog	Rana pipiens	Open (spacious) testicular lobules	Unknown	-	10 and 10 + 10mg/L sodium nitrate	Technical	SR	LTM	Yes	Orton et al. 2006 ^u	Gonadal Morphology; Testes
Frog	Rana pipiens	Testicular ovarian follicles (testicular oocytes)	Unknown	-	10 and 10 + 10mg/L sodium nitrate	Technical	SR	LTM	Yes	Orton et al. 2006 ^u	Gonadal Morphology; Testes
Frog	Xenopus Iaevis	Testicular ovarian follicles (testicular oocytes)	Unknown	-	0.13-3.84	Commercial	FS	Unknown	Yes	Smith et al. 2005 ^s	Gonadal Morphology; Testes
Fish	Carassius auratus	Space between spermatogenic lobules	Reported an increase	1000	100, 1000	Analytical standard	PE	21 days	Yes	Spanò et al. 2004 ^w	Gonadal Morphology; Testes
Frog	Xenopus Iaevis	Testicular resorption (atresia)	Reported an increase (70%)	21	21	Technical	PE	48 hours during gonadal differentiation	Yes	Tavera- Mendoza et al. 2002a ^l	Gonadal Morphology; Testes
Frog	Xenopus laevis	Testicular volume	Reported a reduction	21	21	Technical	PE	48 hours during gonadal differentiation	Yes	Tavera- Mendoza et al. 2002a ^w	Gonadal Morphology; Testes
Fish	Carassius auratus	Ovarian somatic index (ovary size corrected for body size)	Reported none	-	100, 1000	Analytical standard	PE	30 and 56 days	Yes	Nadzialek et al. 2008 ^w	Gonadal Morphology; Ovaries
Fish	Carassius auratus	Ovarian developmental stage	Reported none	-	100, 1000	Analytical standard	PE	30 and 56 days	Yes	Nadzialek et al. 2008 ^w	Gonadal Morphology; Ovaries
Frog	Rana pipiens	Percentage of immature follicles	Unknown	-	10 atrazine and 10 atrazine + 10mg/L sodium nitrate	Technical	SR	LTM	Yes	Orton et al. 2006 ^u	Gonadal Morphology; Ovaries
Frog	Rana pipiens	Immature follicle diameter	Unknown	-	10 atrazine and 10 atrazine + 10mg/L sodium nitrate	Technical	SR	LTM	Yes	Orton et al. 2006 ^u	Gonadal Morphology; Ovaries
Frog	Rana pipiens	Mature follicle diameter	Unknown	-	10 atrazine and 10 atrazine + 10mg/L sodium nitrate	Technical	SR	LTM	Yes	Orton et al. 2006 ^u	Gonadal Morphology; Ovaries
Fish	Carassius auratus	Proportion of oocytes undergoing atresia	Reported an increase (up to 25% of oocytes evaluated)	100, 1000	100, 1000	Analytical standard	PE	21 days	Yes	Spanò et al. 2004 ^w	Gonadal Morphology; Ovaries
Frog	Xenopus Iaevis	Frequency of primary oogonia	Reported a decrease	21	21	Technical	PE	48 hours during gonadal differentiation	Yes	Tavera- Mendoza et al. 2002b ^w	Gonadal Morphology; Ovaries
Frog	Xenopus Iaevis	Frequency of secondary oogonia	Reported an increase	21	21	Technical	PE	48 hours during gonadal differentiation	Yes	Tavera- Mendoza et al. 2002b ^w	Gonadal Morphology; Ovaries
Frog	Xenopus Iaevis	Frequency of atritic oogonia	Reported an increase	21	21	Technical	PE	48 hours during gonadal differentiation	Yes	Tavera- Mendoza et al. 2002b ^w	Gonadal Morphology; Ovaries
Frog	Rana clamitans	Sex ratio	Unknown	-	Control: 0.07- 0.25, treatments: 10, 25	Technical	SR	273 days during larval period	Yes	Coady et al. 2004 ^{s,x}	Sex Ratio

Frog	Xenopus Iaevis	Sex ratio	Unknown	-	Control: 0.1- 0.26, treatments: 0.1, 1.0, 10, 25	Technical	SR	LTM	Yes	Coady et al. 2005 ^{s,x}	Sex Ratio
Frog	Xenopus Iaevis	Sex ratio	Unknown	-	Control: 0.1- 0.26, treatments: 0.1, 1.0, 10, 25	Technical	SR	LTM + 2-3 months	Yes	Coady et al. 2005 ^{s,x}	Sex Ratio
Frog	Rana pipiens	Sex ratio	Unknown	-	10 and 10 + 10mg/L sodium nitrate	Technical	SR	LTM	Yes	Orton et al. 2006 ^{u,y}	Sex Ratio
Fish	Danio rerio	Sex ratio	Reported female biased	22, 220, 2200	22, 220, 2200	Not reported	PE	6 months	Yes	Suzawa and Ingraham 2008 ^z	Sex Ratio
Fish	Pimephales promelas	Spermatogenic cells types	Reported a decrease	5, 50	5 and 50	Technical	SR	21 days	Yes	Bringolf et al. 2004 ¹	Gonadal Function; Testicular Cell Types
Frog	Xenopus Iaevis	Dividing gonocytes	Reported none	-	0.1, 1.0, 10, 25, 100	Technical	SR	LTM	Yes	Kloas et al. 2009 ^v	Gonadal Function; Testicular Cell Types
Frog	Xenopus Iaevis	Internal melanophores	Reported none	-	0.1, 1.0, 10, 25, 100	Technical	SR	LTM	Yes	Kloas et al. 2009 ^v	Gonadal Function; Testicular Cell Types
Frog	Rana pipiens	Proportion of spermatogonia	Unknown	-	10 and 10 + 10mg/L sodium nitrate	Technical	SR	LTM	Yes	Orton et al. 2006 ^u	Gonadal Function; Testicular Cell Types
Frog	Rana pipiens	Proportion of spermatids	Unknown	-	10 and 10 + 10mg/L sodium nitrate	Technical	SR	LTM	Yes	Orton et al. 2006 ^u	Gonadal Function; Testicular Cell Types
Frog	Rana pipiens	Proportion of spermatocytes	Unknown	-	10 and 10 + 10mg/L sodium nitrate	Technical	SR	LTM	Yes	Orton et al. 2006 ^u	Gonadal Function; Testicular Cell Types
Frog	Rana pipiens	Proportion of spermatids	Unknown	-	10 and 10 + 10mg/L sodium nitrate	Technical	SR	LTM	Yes	Orton et al. 2006 ^u	Gonadal Function; Testicular Cell Types
Frog	Xenopus Iaevis	Proportion of spermatogenic cells types	Unknown	-	0.13, 0.27, 0.47, 1.03, 3.3, 3.82, 3.84	Commercial	FS	Unknown	Yes	Smith et al. 2005 ^s	Gonadal Function; Testicular Cell Types
Fish	Carassius auratus	Proportion of spermatogenic cells types	Reported none	-	100 and 1000	Analytical standard	PE	21 days	Yes	Spanò et al. 2004 ^w	Gonadal Function; Testicular Cell Types
Frog	Xenopus Iaevis	Spermatogonial cell nests	Reported a decrease	21	nominal 21, actual 18	Technical	PE	48 hours during gonadal differentiation	Yes	Tavera- Mendoza et al. 2002a ^w	Gonadal Function; Testicular Cell Types
Frog	Xenopus Iaevis	Nursing cells	Reported a decrease	21	nominal 21, actual 18	Technical	PE	48 hours during gonadal differentiation	Yes	Tavera- Mendoza et al. 2002a ^w	Gonadal Function; Testicular Cell Types
Frog	Xenopus Iaevis	Estradiol in males	Unknown	-	Control =0.1- 0.26 and treatments 0.1, 1.0, 10, 25	Technical	SR	LTM	Yes	Coady et al. 2005 ^s	Gonadal Function; Sex Hormone Concentrations
Fish	Carassius auratus	11-ketotestosterone juvenile female	Reported decrease	1000	100, 1000	Analytical standard	PE	30 and 56 days	Yes	Nadzialek et al. 2008 ^w	Gonadal Function; Sex Hormone Concentrations
Fish	Oncorhync hus mykiss	Testosterone	Reported none	-	2, 200 µg/kg intraperitoneal injection	Technical	II	6 days	Yes	Salaberria et al. 2009 ^w	Gonadal Function; Sex Hormone Concentrations
Fish	Oncorhync hus mykiss	Estradiol	Reported none	-	3, 200 µg/kg intraperitoneal injection	Technical	II	6 days	Yes	Salaberria et al. 2009 ^w	Gonadal Function; Sex Hormone Concentrations

Fish	Carassius auratus	Testosterone in adult males	Reported decrease	1000	100, 1000	Analytical standard	PE	21 days	Yes	Spanò et al. 2004 ^w	Gonadal Function; Sex Hormone Concentrations
Fish	Carassius auratus	Testosterone in adult males	Reported decrease	1000	100, 1000	Analytical standard	PE	21 days	Yes	Spanò et al. 2004 ^w	Gonadal Function; Sex Hormone Concentrations
Fish	Carassius auratus	Estradiol to testosterone ratio in adult males	Reported increase	1000	100, 1000	Analytical standard	PE	21 days	Yes	Spanò et al. 2004 ^w	Gonadal Function; Sex Hormone Concentrations
Fish	Carassius auratus	Estradiol in adult males	Reported increase	1000	100, 1000	Analytical standard	PE	21 days	Yes	Spanò et al. 2004 ^w	Gonadal Function; Sex Hormone Concentrations
Fish	Pimephales promelas	Estradiol male	Unknown		25, 250	Technical	FT	21 days	Yes	USEPA 2005 ^I	Gonadal Function; Sex Hormone Concentrations
Frog	Xenopus Iaevis	Clutch size, offspring survival and time to metamorphosis	Unknown	-	1, 10, 25	Technical	PE	Single exposure during larval period then monthly from metamorphosis to 2 years of age.	Yes	Du Preez et al. 2008 ^{u.aa}	Gonadal Function; Reproductive success
Fish	Oncorhync hus mykiss	Plasma vitellogenin	Reported an increase	2, 200 µg/kg intra- peritoneal injection	2, 200 µg/kg intraperitoneal injection	Technical	II	6 days	Yes	Salaberria et al. 2009 ^w	Vitellogenin
Fish	Carassius auratus	Plasma vitellogenin	Reported none	-	1000	Technical	PE	21 days	Yes	Spanò et al. 2004 ^w	Vitellogenin
Frog	Xenopus laevis	Gonadal aromatase activity	Reported none	-	<0.1-4.14	Commercial	FS	Unknown	Yes	Hecker et al. 2004 ^s	Aromatase
Fish	Carassius auratus)varian aromatase activity and gene expression in juveniles	Reported none	-	100, 1000	Analytical standard	PE	30 and 56 days	Yes	Nadzialek et al. 2008	Aromatase

^a LTM = Early larvae to metamorphosis

^b Detected substantial quantities of cyanazine, propazine, and simazine in stock solution made with well water indicating both contamination of stock solution and well water control

^c Only a single egg mass, might not reflect general response

^d Claim no significant effects but also provide p<0.05

^e Provide no within-group variance estimate

^f No data provided but conclude that there was no effect of atrazine

⁹ No statistics provided but conclude that there was no effect of atrazine

^h No data were provided for each concentration and no degrees of freedom are provided for their statistical test

ⁱ Effects could be due to inactive ingredients

^j No estimates of within-group variance anywhere in the manuscript raises questions about reported effects

^k Conducted on only one fish and thus might not reflect a general response

¹No statistics presented for these results

^m Atrazine was a component of a mixture of pesticides tested and thus the experiment did not isolate the effects of atrazine

ⁿ Insufficient power to detect effects because they conducted infection when cercariae were moribund (after 10 h) and thus only had 5-10% infections; used 100 µ/L of ethanol as solvent control, which had significant effects on cercariae and peculiar effects on infections relative to water controls; 10 h exposure is unlikely enough time for atrazine to be absorbed/processed and to subsequently significantly alter immune cell production

° Did not control for mortality because they did not have reliable survival data; it is likely that the most infected individuals died confounding their results for parasite loads

^p Did not control for atrazine-induced mortality prior to cercarial exposure, which has ben shown to be important by Rohr et al. 2008c

^q Insufficient power to detect any effect of atrazine; only 1 of 12 ponds had levels of atrazine above the method detection limit

^r Wetlands within each of their pesticide treatment categories were clustered spatially confounding the entire study

^s Negative control or reference sites were contaminated with atrazine. Therefore, results of atrazine treatment relative to a contaminated control or reference are not valid.

^tData from each experiment were not reported separately, nor were means and variances for each treatment.

^uUnusually high percentages of gonadal abnormalities in a control treatment. Hayes et al., (2002), Carr et al., (2003), Kloas et al., (2008), and Oka et al., (2008) all report <1% intersexes or testicular ovarian oocytes in controls. The negative control in this study was not functioning properly, so we can not draw conclusions by comparing atrazine treatments to control tanks.

^vNo test statistics, degrees of freedom, or means and variances are presented. Therefore, we can not evaluate statistical methods, results, or conclusions.

^wStudy is pseudoreplicated in that they inappropriately used individuals, rather than dosed tanks, as the replicates.

* Statistics were inappropriately conducted individually for each tank and not on treatment means. Thus, no treatment means or variance estimates are available.

^y Reported female biased sex ratios associated with atrazine. However, more than 12% of control animals were intersexes which precluded our ability to determine if statistical

significance was driven by differences in the numbers of females or intersexes. ^zStatistical methodology, results (e.g. test statistics, degrees of freedom), and treatment means and variances are not reported.

^{aa} The animals in this study were exposed during the Jooste et al. (2005) study where it is reported that more than 50% of individuals in controls had testicular ovarian follicles (see comment u).

bb FS = Field study, FT = Flow through experiment, II = Intraperitoneal injection, PE = Pulse experiment, SR = Static renewal experiment

Taxon	Species	Endpoint	Effect direction	Conc. where effect was observed (µ/L)	Conc. tested (µ/L)	Atrazine grade	Experi- ment type ^a	Exposure duration	Reference
Sex ra	tio							70 david division	
Frog	Xenopus laevis	Sex ratio	None	-	1.0, 10, 25	Technical	SR	~78 days during larval period	Carr et al. 2003 ^b
Frog	X. laevis	Sex ratio	None ^d	-	ND ^b , 0.12, 0.32, 0.68, 0.84, 1.23	NA	FS	Unknown	Du Preez et al. 2005 ^{c,d}
Frog	X. laevis	Sex ratio	None	-	0.1, 1.0, 10, 25, 100	Technical	SR	75 days or less if metamorphosed earlier	Kloas et al. 2009 ^c
Frog	X. laevis	Sex ratio	Female biased	10, 100	0.1, 1, 10, and 100	Technical	SR	~65 days during larval period	Oka et al. 2008 ^{c,e}
Vitello	genin								
Fish	Pimephales promelas	Plasma vitellogenin	None ^f	-	5, 50	Technical	SR	21 days	Bringolf et al. 2004 ^{c,}
-ish	Cyprinus carpio	Liver vitellogenin gene expression	None	-	0, 7, 35, 108, 277	Unclear, presumably technical	PE	0, 1, 4, and 30 days	Chang et al. 2005
Frog	Rana clamitans	Plasma vitellogenin	None	-	ND-3.13 (see comments)	Commercial	FS	Unknown	McDaniel et al. 2008 ^{c,g}
rog	R. pipiens	Plasma vitellogenin	None	-	ND-3.13 (see comments)	Commercial	FS	Unknown	McDaniel et al. 2008 ^{c,g}
ish	Danio rerio	Whole embryo vitellogenin	None	-	216, 1620	Unclear, presumably technical	SR	5 days	Muncke et al. 2007
∃ish	P. promelas	Plasma vitellogenin	None None	-	25, 250	Technical	FT	21 days	USEPA 2005
Aroma	tase		None						
rog	X. laevis	Testicular aromatase gene expression	None	-	1, 25, 250	Technical	SR	36 days	Hecker et al. 2005b
=rog	X. laevis	Testicular aromatase gene expression	None	-	1, 25, 250	Technical	SR	36 days	Hecker et al. 2005b
Frog	X. laevis	Testicular aromatase gene expression	None	-	10, 100	Technical	SR	49 days	Hecker et al. 2005a
Fish	D. rerio	Whole body aromatase activity of juveniles		-	1, 10, 100	Unclear, presumably technical	SR	3 days	Kazaeto et al. 2004
Frog	R. clamitans	Adult ovarian aromatase activity (AugSept. 2002)	Increased in agricultural areas	ag. sites ranged from ND-250	ND-2 ^h	Commercial	FS	Unknown	Murphy et al. 2006b
rog	R. clamitans	Juvenile ovarian aromatase (July 2002 and 2003)	Increased in agricultural areas	ag. sites ranged from ND-251	ND-2 ^h	Commercial	FS	Unknown	Murphy et al. 2006b
⁼rog	X. laevis	Testicular aromatase gene expression	None	-	1, 10, 25	Technical	SR	~65 days during larval period	Oka et al. 2008 ^j
-ish	D. rerio	Gonadal aromatase (Cyp 19A1) gene expression	Increased	2.2, 22, 220, 2200	2.2, 22, 220, 2200	Unclear, presumably technical	PE	3 days	Suzawana and Ingraham 2008

Table S2 Summar	v of the effects of atrazine on sex ratio	vitellogenin and aromatase	Excluded studies can be found in Table S1.
		vitchogerini, and aronnatase.	

^a FS = Field study, FT = Flow through, PE = Pulse experiment, SR = Static renewal experiment

^bND = Nondetectable

^cNo test statistics or degrees of freedom are presented. However, means and variances are presented.

^dOne water sample taken in late winter when runoff and fall out from precipitation would be minimal or non-existent is not conclusive evidence that atrazine was not present at the affected reference site during other times of the year.

^eLack of replication in the highest atrazine treatment due to high mortality in one of the two replicates, so conclusions about this specific treatment should be made with caution.

^fPlasma vitellogenin was significantly higher in atrazine and solvent control treatments. Higher plasma vitellogenin in the atrazine treatment was, therefore, likely due to an effect of the solvent.

^gAtrazine concentration for the non-agricultural reference site during 2003 is reported incorrectly. Repeated attempts to contact the author for clarification have not been forthcoming.

^hConcentrations were between ND and 2 except on two occasion at one site when levels were 65 and 250 μ/L.

ⁱMurphey et al. (2006b) dismiss these significant results because aromatase and atrazine concentrations (sampled four weeks prior to frog collection) do not correlate. However, no statistics are presented to support this claim, and atrazine concentrations sampled four weeks before frog sampling are not expected to correlate with gene expression and protein activity.

^jThere was no sexual dimorphism in aromatase expression at 0.1µg/L of atrazine apparently due to a (nonsignificant) decrease in female aromatase expression.